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Theoret ical  methods of predict ing the deformation charac te r i s t i c s  of po lymers  are consid-  
ered.  The principles of reduced var iables  ~re examined. The relat ion between cha rac t e r -  
is t ics functions of po lymers  is analyzed. A predict ion method is considered for polymers ;  
the method is based upon the use of macroscopica l  mechanical  models having a basis  in 
t e rms  of physics .  

Changes in the macroscopica l  proper t ies  of polymers  and mater ia ls  based on polymers  during changes 
in the pa ramete r s  of external  forces  or  s imply in the course  of time are charac te r i s t i c  indicators  resu l t -  
ing f rom relaxation p roces se s .  In this connection, the determination of the ra tes  at which relaxation pro-  
cesses  occur  and the changes of these p rocesses  in dependence onexternal  conditions are of great  impor-  
tance for the predict ion of macroscopica l  cha rac te r i s t i c s .  Since experimental  methods provide scarce  in- 
formation for  a well-founded predict ion of po lymer  proper t ies ,  theoret ical  methods must  be developed. 

1. Methods based on the principles  of reduced variables are smong the widely used techniques of 
predict ing the deformation charac te r i s t i c s  of polymer  mater ia ls .  The principle of t e m p e r a t u r e - t i m e  super -  
position has been most  frequently used. This method res ides  on the fact that when the tempera ture  changes, 
the viscoelast ic  proper t ies  of po lymers  change so that their  descript ion by a proport ionate change in the 
t ime scale is possible,  i.e., the time scale is multiplied with a cer ta in  coefficient a T for  each tempera ture .  
This coefficient is t e rmed  reduction coefficient and is equal to ~'~/~'T ' where ~'T denotes the relaxation 

0 
t ime at some tempera ture  T, and ~'T- denotes the relaxation time at a par t icu lar  tempera ture  T 0. But the 

U 
relaxation time depends not only upon the tempera ture  but also upon the s t ress ,  the deformation, the mois -  
ture, and other external pa rame te r s .  Changes in these pa rame te r s  resul t  in modifications of the deforma-  
tion charac te r i s t i c s  of po lymers .  The influence of these changes can be taken into account by agenera l ized  
reduction coefficient 

a:~ = "~ / I:~. o (i.I) 

where any of these pa rame te r s  is denoted by x. The case x = T  cor responds  to the principle of t empera-  
t u r e - t i m e  superposi t ion [1]; for x=cr, where a denotes the s t ress ,  we are concerned with s t r e s s - t i m e  super -  
position [2, 3]; and for  x=  X, where )/ denotes mois ture ,  we have the principle of m o i s t u r e - t i m e  superpo-  
sition [4], etc.  When we use the methods of reduced variables,  we can expand the time ffrequency)-depen- 
dent range by severa l  o rders  of magnitude and predict  changes in the basic  relaxation charac te r i s t i c s  of 
polymers  during variat ions of the pa r ame te r s  of an external  interaction force .  The principles of reduced 
variables  can be applied in a l imited variabil i ty range of the pa rame te r  x. The determinat ion of this var i -  
ability range is a problem per  se. 

The reduction method, which is based upon the principle of s t r e s s - t i m e  superposition, makes use of 
exper imental  resul ts  which were obtained under various,  but not great ly different loads.  When exper imen-  
tal data for a relat ively small  time interval are available at various loads and when the curves  are shifted 
relative to a selected fixed curve along the logar i thmic time axis until part ial  coincidence of the curves  is 
obtained at a fixed s t r e s s  value, it is possible to expand the time interval by severa l  o rders  of magnitude 
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of variat ions of the corresponding charac te r i s t i cs .  The extent of the shift on the time scale is equal to the 
logar i thm of the coefficient of s t r e s s - t i m e  superpostt ion (aa=~'a/~o). 

When the principle of s t r e s s - t i m e  superposit ion is used, it is not possible to employ equations which 
were obtained with the l inear theory of viscoelast ic i ty  [5]. However, when a reduced time ~p is introduced 
so that the equations of viscoelast ic i ty  are invariant with respect  to the reduced time, it is possible to ex-  
p ress  the formulas  of viscoelas t ic i ty  theory through a reduced time and to switch af terwards to the true 
time with the aid of the formula  

t 

r = ~a [z (t)] dt (1.2) 
o 

where a(cr) denotes some function of the s t ress .  Let us show that this postulate can theoret ical ly predict  
phenomena which are observed in pract ice  in the case of vibration-induced creep.  It was shown* that the 
function a~ can be assumed in a form which is an analog to the W i l l i a m s - L a n d e l l - F e r r y  formula:  

m (z -- z0) (1.3) 
In ao az + z - -  zo 

Since the quantity In a a varies  only insignificantly, we replace Eq. (1.3) by the approximation formula  

b i6  - -  bz (1.4) 
a~ = a~ + ~-- ~o 

where b 1 =1 +a 1 and b2= (1 +a 0 ao-a 2. 

Vibration-induced creep can be observed when a constant s t r e ss  r is applied to a sample and when, 
in addition, a periodical ly variable load with amplitude a 2 is superimposed:  

a = ~l + a~ sin cot (1.5) 

By substituting Eq. (1.4) into Eq. (1.2) and taking into considerat ion Eq. (1.5), we obtain 

t t 
b lz l  '-~- b16,  s i n  o~t - -  be d t  ( 1 . 6 )  

9(0 = I a  [z(t)l dt = ~ - - ; - 4 ~ -  
o o 

and, af ter  integration, 

2(bl~o--b~--a~b~) I ar~t (az-{-zl--~~176 ---z_A ] (1.7) 

When, during a single oscil lation period, the true time t changes by 2r/w, the reduced time changes 
by the amount 

2 ~ (  bl~o - -  b2 - -  a2bt ) 
-d-- b i ~ V (a~ -t- ~l -- Zo) ~ -- z2 ~ 

After dividing this formula by the increment  of the reduced time at the s t ress  amplitude ~2 = 0, we 
obtain the coefficient of the average accelera t ion of the creep p rocess :  

( bx~o--b~--a~b~)) (1.8) K (z) = ~ + ~ -  ~~ bl + 
b lz i  - -  b.~ ] / ' ( a . ,  --]- z l  - -  z0) z - -  r 2 

Thus, application of an additional small,  sinusoidally-varying load resul ts  in a sharp accelerat ion of 
the creep process ,  i.e., we have the phenomenon of vibration-induced creep.  

2. One of the predict ion problems concerns the theoret ical  calculation of various deformation curves  
f rom a single, experimentally-obtained curve.  This problem is usually solved by employing integral equa- 
tions which describe the viscoelast ic  proper t ies  and include the distribution function of the re laxat iont imes 
(or delay t imes).  We emphasize that this method is not sufficiently accurate,  because at the beginning, the 
formulas  of successive approximations must  be used to determine the distribution function of the re laxa-  
tion t imes which is then fur ther  approximated after  substituting the function obtained into the cor respond-  
ing integral  formulas;  after  the corresponding calculations, the unknown charac te r i s t i cs  are obtained. 

The problem can be solved in another way. When one of the charac te r i s t i c  functions is known, the 
Four ier  t r ans fo rm can be used to determine a relation betweenthe static and dynamic charac te r i s t i c s  rune- 

*Yu. S. Urzhumtsev,  Author 's  Abstract  of Dissertation, L. Ya. Karpov Physicochemical  Scientif ic-Re- 

search Institute (1969). 
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tions of a polymer .  For  example, when the modulus of elast ici ty E(t) in 
static relaxation is known, the components of the complex dynamic modu- 
lus can be determined by the formulas  

c~ 

E" o) ~ E (t)cos dt (2.1) E' (~) = ~o ~ E (t) sin cot dt, (o~) = ~ oJt 
0 0 

in the case of a l inear  polymer,  or  vice versa,  if any of the components 
of the complex dynamic modulus of elast ici ty is known, the inverse 
Four ie r  t r ans fo rm can be used to determine the relaxation modulus f rom 
equations of the form 

E ( t ) = 2  i E ' (  )signor 2 ~  COS (,Dr e(t)= E" (o)) ~)- do) (2.2) 
0 0 

The formulas  which several  r e s ea r che r s  [5, 6] obtained with the 
aid of the Four ie r  t r ans fo rm were not experimental ly  checked for  the 
convers ion of the static po lymer  charac te r i s t i c s  to dynamic cha rac te r -  
is t ics  with Eq. (2.1). It is in this connection interest ing to compare the 
experimental  data with calculated values which were obtained with Eq. 
(2.1). The s t r ess  relaxation figures for polyisobutylene [7] (T= 300~ 
were used to determine (Fig. 1) the frequency dependence of the modulus 
of elast ici ty (curve 1); this dependence was compared with the exper i -  
mental ly-determined dependence (curve 2). Calculations were made with 
a computer .  It was assumed that E(t)=1010.6 dyn/cm 2 for  t ~ 0  and that 
E(t)=0 for t - - ~ .  

Sat isfactory agreement  between the curves  can be inferred f rom 
the figure. A cer ta in  spreading of the curves is related to the fact that 

it is impossible to obtain an accurate  descr ipt ion of the relaxation modulus in the entire variabil i ty range 
of the time coordinate {from 0 to ~). We note that this method, as well as the method based upon the re -  
laxation-time spec t ra  (or delay-time spectra),  is charac ter ized  by the shortcoming that knowledge of a c e r -  
tain charac te r i s t i c  function of the polymer  in an infinitely long time interval is required.  

3. In pract ice ,  it is frequently neces sa ry  to predict,  with a cer ta in  degree of accuracy,  the basic 
deformation charac te r i s t i c s  of a polymer  f rom resul ts  of short  tests,  i.e., the basic deformation charac te r -  
is t ics  must be determined when only a finite number  of points of measurements  is available. This problem 
can be solved with a method which is based upon mechanical ,  macroscopica l  models with a sound basis  in 
t e rms  of physics .  Considerat ions of the general  laws of polymer  deformation are used to construct  a me-  
chanical model, each element of which has a cer ta in  meaning in t e rms  of physics .  The basic relaxation 
p rocesses  which occur  during deformations are brought into account. 

Independent experimental  resul ts  concerning any one of the charac te r i s t i c  functions of a polymer  in 
a small  f requency range and time interval (actually only a few discrete  points are required) can be used 
to determine the numerica l  values of the elements  of the model. All other charac te r i s t i c  functions are 
determined f rom the solution of the differential equation which corresponds  to the model adopted. Rather  
simple models for which the differential equations can be derived and solved without problems for  both 
the dynamic and static load application case are used in each of the three states in which a po lymer  mate-  
rial can exist .  For  example, a s ix-e lement  model (Fig. 2) was successful ly used for  the descript ion of the 
deformation charac te r i s t i c s  of l inear  polymers  which are in a highly elast ic  state.  

The various elements  of this model have the following meanings i n t e r m s  of physics .  The spring with 
modulus E 0 descr ibes  the elast ic  deformation which in the po lymer  resul ts  f rom deformations of valence 
angles and changes in the interatomic distances (this type of deformation is par t icu lar ly  visible in the case 
of rapid load application). The Kelvin element ( E -  70) descr ibes  the development of the delayed defor-  
mation and accounts for the molecular  p rocess  which is related to both mobility and orientation of polymer  
segments .  

Large side chains and polar  groups in macromolecules  imply the development of t ime-dependent 
bonds which reduce the mobility of segments .  The Maxwell element (E~-~t) is used to bring into account 
those segments  whose rupture is of the type of a relaxation p rocess .  The viscoplast ic  deformation corn- 
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portent, which is always present  in the deformation of l inear  polymers  and which appears most  c lear ly  in 
long interact ion t imes and at high tempera tures ,  is brought into account by the element  ~? pl" A th i rd -o rde r  
differential equation of the form 

3 ~ ~ d~ (3.1) 

i = l  d t l  ~,=0 dt~ 

corresponds  to this model, where b i and ai depend upon ~?i and E i. 

In the case of a dynamic load application, a solution to Eq. (3.1) can be obtained in the form 
E '  (0)) (0eaaba _ (04 (a.zb~ - -  alba - -  aabl)  -{- (0~' (a lb l  - -  aob2) 

= (06aa~ q- (04 (a22 -- 2alaa) -{- (03 (al~ _ 2a0a~) -{- a0 a (3.2) 

(05 (a.aba - -  aab2) - ~  (0a (a lb~ - -  aobs  - -  a~bl) -~- (0aobl 
E" ((o) = ~ : + ~  __ 2~1a~) + (03 (~1, _ 2~,) + ~* 

The experimental  static and dynamic charac te r i s t i cs  of polyisobutylene were compared with the r e -  
sults obtained with the s ix-e lement  model of Fig. 2 for  the purpose of i l lustrating our method. The numer-  
ical values of the model pa ramete r s  were determined f rom the experimental  values of the real  par t  of the 
complex modulus of elast ici ty of polyisobutylene [5, 7]. The s t r ess  relaxation data are depicted in Fig. 3. 
R follows f rom a compar ison  of calculated curve 1 and experimental  curve 2 that the agreement  between 
the curves  is sa t isfactory.  The frequency dependence of the imaginary par t  of the complex dynamic modu- 
lus is shown in F igs .1  and4. Satisfactory agreement  between the calculated curves  (dashed lines) and the 
experimental  curves  is observed.  

The larges t  quantitative discrepancies  are found between calculated and experimental  curves  for  the 
loss modulus (though qualitative agreement  between the curves  is observed).  When a more  accurate quan- 
titative descript ion of these charac te r i s t i c  functions is desired,  one must employ models of g rea t e r  com-  
plexity, but the mathematical  calculations are  very  complicated in this case.  Fur thermore ,  one must in- 
c rease  the number  of the required experimental  values of any of the polymer  charac te r i s t i c s  used to de- 
termine the model pa rame te r s .  
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