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Theoretical methods of predicting the deformation characteristics of polymers are consid~
ered. The principles of reduced variables are examined. The relation between character-
istics functions of polymers is analyzed. A prediction method is considered for polymers;
the method is based upon the use of macroscopical mechanical models having a basis in
terms of physics.

Changes in the macroscopical properties of polymers and materials based on polymers during changes
in the parameters of external forces or simply in the course of time are characteristic indicators result-
ing from relaxation processes, In this connection, the determination of the rates at which relaxation pro-
cesses occur and the changes of these processes in dependence onexternal conditions are of great impor-
tance for the prediction of macroscopical characteristics. Since experimental methods provide scarce in-
formation for a well-founded prediction of polymer properties, theoretical methods must be developed.

1. Methods based on the principles of reduced variables are among the widely used techniques of
predicting the deformation characteristics of polymer materials. The principle of temperature—time super-
position has been most frequently used. This method resides on the fact that when the temperature changes,
the viscoelastic properties of polymers change so that their description by a proportionate change in the
time scale is possible, i.e., the time scale is multiplied with a certain coefficient arp for each temperature.
This coefficient is termed reduction coefficient and is equal to TT/TT , where T denotes the relaxation
time at some temperature T, and TTo denotes the relaxation time at a particular temperature T;. But the
relaxation time depends not only upon the temperature but also upon the stress, the deformation, the mois-
ture, and other external parameters. Changes in these parameters result in modifications of the deforma-~
tion characteristics of polymers. The influence of these changes can be taken into account by ageneralized
reduction coefficient

@y =Ty | Ty (1.1)

where any of these parameters is denoted by x. The case x=T corresponds to the principle of tempera-
ture—time superposition [1]; for x=0, where o denotes the stress, we are concerned with stress—time super-
position {2, 3]; and for x =), where x denotes moisture, we have the principle of moisture—~time superpo-
sition [4], etc. When we use the methods of reduced variables, we can expand the time (frequency)-depen~
dent range by several orders of magnitude and predict changes in the basic relaxation characteristics of
polymers during variations of the parameters of an external interaction force. The principles of reduced
variables can be applied in a limited variability range of the parameter x, The determination of this vari-
ability range is a problem per se. ’

The reduction method, which is based upon the principle of stress—time superposition, makes use of
experimental results which were obtained under various, but not greatly different loads. When experimen-
tal data for a relatively small time interval are available at various loads and when the curves are shifted
relative to a selected fixed curve along the logarithmic time axis until partial coincidence of the curves is
obtained at a fixed stress value, it is possible to expand the time interval by several orders of magnitude
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of variations of the corresponding characteristics, The extent of the shift on the time scale is equal to the
logarithm of the coefficient of stress—time superposition (aa=Tg/ 1;,0).

When the principle of stress—time superposition is used, it is not possible to employ equations which
were obtained with the linear theory of viscoelasticity [5]. However, when a reduced time ¢ is introduced
so that the equations of viscoelasticity are invariant with respect to the reduced time, it is possible to ex-
press the formulas of viscoelasticity theory through a reduced time and to switch afterwards to the true
time with the aid of the formula

t

o="{als@nar (1.2)

0

where a (o) denotes some function of the stress. Let us show that this postulate can theoretically predict
phenomena which are observed in practice in the case of vibration-induced creep. It was shown* that the
function e can be assumed in a form which is an analog to the Williams—Landell—~Ferry formula:

a5 —a0) (1.3)
s = o to—s
Since the quantity 1n a varies only insignificantly, we replace Eq. (1.3) by the approximationformula
_ bhio—b (1.4)
=g +6—Go

where b;=1+a, and by= (1 +a,) 0y—a,.

Vibration-induced creep can be observed when a constant stress ¢, is applied to a sample and when,
in addition, a periodically variable load with amplitude o, is superimposed:

¢ =0y -+ 0, sin ot (1.5)
By substituting Eq. (1.4) into Eq. (1.2) and taking into consideration Eq. (1.5), we obtain

i t
bio1 + b162 sin ©f — b

Q) = Sa[c(t)] dt zgaz+cl+szsinmt—60d

0 0

y (1.6)

and, after integration,
_ 2 (b160 — by — ashy) ' {22+ 01— tgot /25, —G 1.7
1) = byt _ t 1.7
¢ it + o Vi{e: + o1 — 60)® — 622 larctg V (az + 61 — 00)2 — a2 T are gV(az—(—cs]——uo)z—c-A
When, during a single oscillation period, the true time t changes by 27/w, the reduced time changes
by the amount :

25 (bl + biso — by — a:zbl : ‘)
© A\ V (a2 + o1 — o) — 22

After dividing this formula by the increment of the reduced time at the stress amplitude 0y,=0, we
obtain the coefficient of the average acceleration of the creep process:

as -+ 61— Go b bigo — by — azh1) 1.8
0161 — by ( 1+ V (a2 + 61 — Go)® — 532> -9

K(o) =

Thus, application of an additional small, sinusoidally-varying load results in a sharp acceleration of
the creep process, i.e., we have the phenomenon of vibration-induced creep.

2. One of the prediction problems concerns the theoretical calculation of various deformationcurves
from a single, experimentally-obtained curve, This problem is usually solved by employing integral equa-
tions which describe the viscoelastic properties and include the distribution function of the relaxationtimes
(or delay times). We emphasize that this method is not sufficiently accurate, because at the beginning, the
formulas of successive approximations must be used to determine the distribution function of the relaxa-
tion times which is then further approximated after substituting the function obtained into the correspond-
ing integral formulas; after the corresponding calculations, the unknown characteristics are obtained.

The problem can be solved in another way. When one of the characteristic functions is known, the
Tourier transform can be used to determine a relation betweenthe static and dynamic characteristics func-

*Yu. S, Urzhumtsev, Author's Abstract of Dissertation, L. Ya. Karpov Physicochemical Scientific~-Re-
search Institute (1969).

270



4

£ (dyn/cm®)

tions of a polymer. For example, when the modulus of elasticity E() in

L // static relaxation is known, the components of the complex dynamic modu-
lus can be determined by the formulas

E@)=olE@sinotdt, E'(©)=0lE{cosatds @.1)
[

9

in the case of a linear polymer, or vice versa, if any of the components
of the complex dynamic modulus of elasticity is known, the inverse
Fourier transform can be used to determine the relaxation modulusfrom
equations of the form
?6 2 e sin ot 2 ¢ cos ot
E () :TS E0) 2% go, E@)= TS E" (0) 2= o 2.2)
[

L';.‘.J Tt , 9

% % The formulas which several researchers [5, 6] obtained with the

g aid of the Fourier transform were not experimentally checked for the
conversion of the static polymer characteristics to dynamic character-
istics with Eq. (2.1). It is in this connection interesting to compare the
7 experimental data with calculated values which were obtained with Eq.

(2.1). The stress relaxation figures for polyisobutylene [7] (T =300°K)
were used to determine (Fig. 1) the frequency dependence of the modulus
of elasticity (curve 1); this dependence was compared with the experi-
mentally-determined dependence (curve 2), Calculations were made with
a computer. It was assumed that E¢)=10"% dyn/em? for t —0 and that
E¢)=0fort—e,

Satisfactory agreement between the curves can be inferred from
the figure, A certain spreading of the curves is related fo the fact that
it is impossible to obtain an accurate description of the relaxation modulus in the entire variability range
of the time coordinate (from 0 to ). We note that this method, as well as the method based upon the re-
laxation-time spectra (or delay-time spectra), is characterized by the shortcoming that knowledge of a cer-
tain characteristic function of the polymer in an infinitely long time interval is required.

3. In practice, it is frequently necessary to predict, with a certain degree of accuracy, the basic
deformation characteristics of a polymer from results of short tests, i.e., the basic deformation character-
istics must be determined when only a finite number of points of measurements is available. This problem
can be solved with a method which is based upon mechanical, macroscopical models with a sound basis in
terms of physics. Considerations of the general laws of polymer deformation are used to construct a me-
chanical model, each element of which has a certain meaning in terms of physics. The basic relaxation
processes which occur during deformations are brought into account.

Independent experimental results concerning any one of the characteristic functions of a polymer in
a small frequency range and time interval (actually only a few discrete points are required) can be used
to determine the numerical values of the elements of the model. All other characteristic functions are
determined from the solution of the differential equation which corresponds to the model adopted, Rather
simple models for which the differential equations can be derived and solved without problems for both
the dynamic and static load application case are used in each of the three states in which a polymer mate-
rial can exist, For example, a six~element model (Fig, 2) was successfully used for the description of the
deformation characteristics of linear polymers which are in a highly elastic state.

The various elements of this model have the following meanings interms of physics. The spring with
modulus E; describes the elastic deformation which in the polymer results from deformations of valence
angles and changes in the interatomic distances (this type of deformation is particularly visible in the case
of rapid load application). The Kelvin element (E_ — n,) describes the development of the delayed defor-
mation and accounts for the molecular process which is related to both mobility and orientation of polymer
segments.

Iarge side chains and polar groups in macromolecules imply the development of time~-dependent
bonds which reduce the mobility of segments. The Maxwell element (E,—n;) is used to bring into account
those segments whose rupture is of the type of a relaxation process. The viscoplastic deformation com-
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ponent, which is always present in the deformation of linear polymers and which appears most clearly in
long interaction times and at high temperatures, is brought into account by the element 7 pl* A third-order
differential equation of the form

' . 3 :
Moo= Na-2s (3.1)

corresponds to this model, where bj and ¢i depend upon 7 and E;.

In the case of a dynamic load application, a solution to Eq. (3.1) can be obtained in the form

' __ @Csbs — 0 (asby — a1bs — a3by) 4 02 (@b — aobs)
E (@)= @%ag® - 0 (a2 — 2a103) |- ©OF (A% — 200s) + Go (3.2)

@5 (azb; — asha) - 03 (a1bz — apbs — ashy) + Waeh:

E (o) = @%a2 + 0f (222 — 2a1a3) + 02 (a2 — 2a0a2) 4 ao?

The experimental static and dynamic characteristics of polyisobutylene were compared with the re~
sults obtained with the six-element model of Fig. 2 for the purpose of illustrating our method. The numer-
ical values of the model parameters were determined from the experimental values of the real part of the
complex modulus of elasticity of polyisobutylene [5, 7]. The stress relaxation data are depicted in Fig. 3.
It follows from a comparison of calculated curve 1 and experimental curve 2 that the agreement between
the curves is satisfactory. The frequency dependence of the imaginary part of the complex dynamic modu-
lus is shown in Figs.land4. Satisfactory agreement between the calculated curves (dashed lines) and the
experimental curves is observed.

The largest quantitative discrepancies are found between calculated and experimental curves for the
loss modulus (though qualitative agreement between the curves is observed). When a more accurate quan-
titative description of these characteristic functions is desired, one must employ models of greater com-
plexity, but the mathematical calculations are very complicated in this case. Furthermore, one must in-
crease the number of the required experimental values of any of the polymer characteristics used to de-
termine the model parameters.
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